Long, GL & Liu, XS Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. HAS 65032302. https://doi.org/10.1103/PhysRevA.65.032302 (2002).
Gao, CY, Guo, PL & Ren, BC Efficient quantum secure direct communication with full Bell state measurement. Quantum. Eng. 3(4), e83 (2021).
Wu, J. et al. Quantum secure direct communication security based on Wyner’s wiretapping channel theory. Quantum. Eng. 1(4), e26 (2019).
Feihu, Xu., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. mod. Phys. 92025002. https://doi.org/10.1103/RevModPhys.92.025002 (2020).
Chen, Y.A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometers. Nature 589, 214–219. https://doi.org/10.1038/s41586-020-03093-8 (2021).
Sheng, YB, Zhou, L. & Long, GL One-step secure quantum direct communication. Science. Bull. 67(4), 367. https://doi.org/10.1016/j.scib.2021.11.002 (2022).
Ali-Khan, I., Broadbent, CJ & Howell, JC Large-alphabet quantum key distribution using energy-time entangled bipartite states. Phys. Rev. Lett. 98(6), 060503. https://doi.org/10.1103/PhysRevLett.98.060503 (2007).
Nunn, J. & Wright, LJ Frequency-entangled quantum key distribution by means of time-frequency conversion. Opt. Express 2115959. https://doi.org/10.1364/OE.21.015959 (2013).
Mower, J. et al. High-dimensional quantum key distribution using dispersive optics. Phys. Rev. HAS 872013. https://doi.org/10.1103/PhysRevA.87.062322 (2013).
Zhong, T. et al. Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional coding. New J. Phys. 17(2), 022002. https://doi.org/10.1088/1367-2630/17/2/022002 (2015).
Tang, GZ et al. Measurement device independent plug-and-play experimental quantum key distribution. Phys. Rev. HAS. 94032326. https://doi.org/10.1103/PhysRevA.94.032326 (2016).
Islam, NT, Lim, CCW, Cahall, C., Kim, J. & Gauthier, DJ Proven high-throughput, secure quantum key distribution with time-lapsed qudits. Science. Adv. 3(11), 2. https://doi.org/10.1126/sciadv.1701491 (2017).
Jin, J. et al. True time-encoded quantum key distribution over a turbulent depolarizing free-space channel. Opt. Express https://doi.org/10.1364/OE.27.037214 (2019).
Cui, ZX, Zhong, W., Zhou, L. & Sheng, YB Measurement device-independent quantum key distribution with hyper-coding. Sci China: Phys. Mech. Star. 62110311. https://doi.org/10.1007/s11433-019-1438-6 (2019).
Tang, GZ, Li, CY, and Wang, M. Polarization discriminated device-independent quantum key distribution of time-phase encoding. Quantum. Eng. 3, e79. https://doi.org/10.1002/que2.79 (2021).
Zhou, L. et al. Cost-effective purification of multiphoton polarization entanglement with Bell state. Inf. Quantum Treat. 20(8), 257. https://doi.org/10.1007/s11128-021-03192-z (2021).
Kwek, LC et al. Chip-based quantum key distribution. AAPPS bull. 31(1), 15 (2021).
Bennett, CH et al. Teleportation of an unknown quantum state via the classical and Einstein-Podolsky-Rosen dual channels. Phys. Rev. Lett. 70(13), 1895 (1993).
Hu, XM et al. Experimental certification for non-classic teleportation. Quantum. Eng. 1(2), e13 (2019).
Google Scholar
Welch, JL & Lynch, N. A new fault-tolerant algorithm for clock synchronization. Inf. Calculation. 77(1), 136. https://doi.org/10.1145/800222.806738 (1988).
Xi, M. et al. Implemented a two-beam state-based clock synchronization system with dispersion-free HOM feedback. Opt. Express 29(18), 28607–28618 (2021).
Pang, JY & Chen, JW On the renormalization of entanglement entropy. AAPPS bull. 31(1), 28 (2021).
Wang, X. et al. Transmission of photonic polarization states from the geosynchronous satellite in Earth orbit to the ground. Quantum. Genius 3(3), e73 (2021).
Google Scholar
Einstein, A. Does the inertia of a body depend on its energy content. Ann. Phys. 18639641 (1905).
Google Scholar
Eddington, AS The mathematical theory of relativity 2nd ed. (Cambridge University Press, 1924).
Lewandowski, W., Azoubib, J. & Klepczynski, WJ GPS: main time transfer tool. proc. IEEE 87, 163–172. https://doi.org/10.1109/5.736348 (1999).
Anderson, R., Vetharaniam, I. & Stedman, GE Timing Conventionality, Gauge Dependency, and Testing Relativity Theories. Phys. representing 295(34), 93180. https://doi.org/10.1016/S03701573(97)00051-3 (1998).
Jozsa, R. et al. Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 87(9), 2010-2013. https://doi.org/10.1103/PhysRevLett.85.2010 (2000).
Krco, M. & PP,. Quantum clock synchronization: multiparty protocol. Phys. Rev. HAS 66(2), 024305. https://doi.org/10.1103/PhysRevA.66.024305 (2002).
Ben-Av, R. & Exman, I. Optimized Multi-Party Quantum Clock Synchronization. Phys. Rev. HAS 84(1), 344–23448. https://doi.org/10.1103/PhysRevA.84.014301 (2011).
Zhang, J., Long, GL, Deng, Z., Liu, W. & Lu, Z. Nuclear magnetic resonance implementation of a quantum clock synchronization algorithm. Phys. Rev. HAS 70(6), 5412–5418. https://doi.org/10.1103/PhysRevA.70.062322 (2004).
Kong, X. et al. Implemented multi-party quantum clock synchronization. Quantum. Inf. Treat 17207. https://doi.org/10.1007/s11128-018-2057-9 (2018).
Yue, A., Jie-Dong, A., Zhang, A., Yu-Ran Fan, A. & Heng, A. Operation-triggered quantum clock synchronization. Phys. Rev. HAS 92032321. https://doi.org/10.1103/PhysRevA.92.032321 (2015).
Huelga, SF et al. On the improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868. https://doi.org/10.1103/PhysRevLett.79.3865 (1997).
Lukens, JM & Lougovski, P. Frequency-encoded photonic qubits for scalable quantum information processing. Optical 4(1), 8–16. https://doi.org/10.1364/OPTICA.4.000008 (2017).
Fabre, N. et al. Generation of a time-frequency grid state with integrated two-photon frequency combs. Phys. Rev. HAS 102012607. https://doi.org/10.1103/PhysRevA.102.012607 (2020).
Braginsky, VB & Vorontsov, YI Limitations of quantum mechanics in macroscopic experiments and modern experimental technique. Sov. Phys. Usp. 17, 644–650. https://doi.org/10.1070/PU1975v017n05ABEH004362 (1975).
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit. Science 3061330 (2004).
Caves, CM et al. On the measurement of a weak classical force coupled to a quantum mechanical oscillator. I. Matters of principle. Rev. mod. Phys. 52(2), 341392. https://doi.org/10.1103/RevModPhys.52.341 (1980).
Choi, BJ, Liang, H., Shen, X. & Zhuang, A. DCS: Distributed Asynchronous Clock Synchronization in Delay Tolerant Networks. IEEE Trans. Parallel Distrib. System 23, 491–504. https://doi.org/10.1109/TPDS.2011.179 (2012).
Yuan, W., Wu, N., Etzlinger, B., Wang, H., and Kuang, J. Cooperative joint localization and clock synchronization based on Gaussian message passing in asynchronous wireless networks. IEEE Trans. veh. Technology 65(9), 7258–7273. https://doi.org/10.1109/TVT.2016.2518185 (2016).
Zhang, Z., Gong, S., Dimitrovski, AD & Li, H. Time synchronization attack in a smart grid: impact and analysis. IEEE Trans. Smart Grid 4(1), 87–98. https://doi.org/10.1109/TSG.2012.2227342 (2013).