A clock synchronization method based on quantum entanglement

0
  • Long, GL & Liu, XS Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. HAS 65032302. https://doi.org/10.1103/PhysRevA.65.032302 (2002).

    ADS CAS Article Google Scholar

  • Gao, CY, Guo, PL & Ren, BC Efficient quantum secure direct communication with full Bell state measurement. Quantum. Eng. 3(4), e83 (2021).

    Google Scholar article

  • Wu, J. et al. Quantum secure direct communication security based on Wyner’s wiretapping channel theory. Quantum. Eng. 1(4), e26 (2019).

    Google Scholar article

  • Feihu, Xu., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. mod. Phys. 92025002. https://doi.org/10.1103/RevModPhys.92.025002 (2020).

    ADS MathSciNet Google Scholar Article

  • Chen, Y.A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometers. Nature 589, 214–219. https://doi.org/10.1038/s41586-020-03093-8 (2021).

    ADS CAS PubMed Article Google Scholar

  • Sheng, YB, Zhou, L. & Long, GL One-step secure quantum direct communication. Science. Bull. 67(4), 367. https://doi.org/10.1016/j.scib.2021.11.002 (2022).

    Google Scholar article

  • Ali-Khan, I., Broadbent, CJ & Howell, JC Large-alphabet quantum key distribution using energy-time entangled bipartite states. Phys. Rev. Lett. 98(6), 060503. https://doi.org/10.1103/PhysRevLett.98.060503 (2007).

    ADS CAS PubMed Article Google Scholar

  • Nunn, J. & Wright, LJ Frequency-entangled quantum key distribution by means of time-frequency conversion. Opt. Express 2115959. https://doi.org/10.1364/OE.21.015959 (2013).

    ADS CAS PubMed Article Google Scholar

  • Mower, J. et al. High-dimensional quantum key distribution using dispersive optics. Phys. Rev. HAS 872013. https://doi.org/10.1103/PhysRevA.87.062322 (2013).

    CAS Google Scholar Article

  • Zhong, T. et al. Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional coding. New J. Phys. 17(2), 022002. https://doi.org/10.1088/1367-2630/17/2/022002 (2015).

    Article on Google Scholar Ads

  • Tang, GZ et al. Measurement device independent plug-and-play experimental quantum key distribution. Phys. Rev. HAS. 94032326. https://doi.org/10.1103/PhysRevA.94.032326 (2016).

    ADS CAS Article Google Scholar

  • Islam, NT, Lim, CCW, Cahall, C., Kim, J. & Gauthier, DJ Proven high-throughput, secure quantum key distribution with time-lapsed qudits. Science. Adv. 3(11), 2. https://doi.org/10.1126/sciadv.1701491 (2017).

    CAS Google Scholar Article

  • Jin, J. et al. True time-encoded quantum key distribution over a turbulent depolarizing free-space channel. Opt. Express https://doi.org/10.1364/OE.27.037214 (2019).

    PubMed Article PubMed Central Google Scholar

  • Cui, ZX, Zhong, W., Zhou, L. & Sheng, YB Measurement device-independent quantum key distribution with hyper-coding. Sci China: Phys. Mech. Star. 62110311. https://doi.org/10.1007/s11433-019-1438-6 (2019).

    ADS CAS Article Google Scholar

  • Tang, GZ, Li, CY, and Wang, M. Polarization discriminated device-independent quantum key distribution of time-phase encoding. Quantum. Eng. 3, e79. https://doi.org/10.1002/que2.79 (2021).

    Google Scholar article

  • Zhou, L. et al. Cost-effective purification of multiphoton polarization entanglement with Bell state. Inf. Quantum Treat. 20(8), 257. https://doi.org/10.1007/s11128-021-03192-z (2021).

    ADS MathSciNet Google Scholar Article

  • Kwek, LC et al. Chip-based quantum key distribution. AAPPS bull. 31(1), 15 (2021).

    Google Scholar article

  • Bennett, CH et al. Teleportation of an unknown quantum state via the classical and Einstein-Podolsky-Rosen dual channels. Phys. Rev. Lett. 70(13), 1895 (1993).

    ADS MathSciNet CAS Google Scholar Article

  • Hu, XM et al. Experimental certification for non-classic teleportation. Quantum. Eng. 1(2), e13 (2019).

    Google Scholar

  • Welch, JL & Lynch, N. A new fault-tolerant algorithm for clock synchronization. Inf. Calculation. 77(1), 136. https://doi.org/10.1145/800222.806738 (1988).

    MathSciNet Google Scholar MATH Article

  • Xi, M. et al. Implemented a two-beam state-based clock synchronization system with dispersion-free HOM feedback. Opt. Express 29(18), 28607–28618 (2021).

    Article on Google Scholar Ads

  • Pang, JY & Chen, JW On the renormalization of entanglement entropy. AAPPS bull. 31(1), 28 (2021).

    Article on Google Scholar Ads

  • Wang, X. et al. Transmission of photonic polarization states from the geosynchronous satellite in Earth orbit to the ground. Quantum. Genius 3(3), e73 (2021).

    Google Scholar

  • Einstein, A. Does the inertia of a body depend on its energy content. Ann. Phys. 18639641 (1905).

    Google Scholar

  • Eddington, AS The mathematical theory of relativity 2nd ed. (Cambridge University Press, 1924).

    MATH Google Scholar

  • Lewandowski, W., Azoubib, J. & Klepczynski, WJ GPS: main time transfer tool. proc. IEEE 87, 163–172. https://doi.org/10.1109/5.736348 (1999).

    Article on Google Scholar Ads

  • Anderson, R., Vetharaniam, I. & Stedman, GE Timing Conventionality, Gauge Dependency, and Testing Relativity Theories. Phys. representing 295(34), 93180. https://doi.org/10.1016/S03701573(97)00051-3 (1998).

    MathSciNet ArticleGoogle Scholar

  • Jozsa, R. et al. Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 87(9), 2010-2013. https://doi.org/10.1103/PhysRevLett.85.2010 (2000).

    Article on Google Scholar Ads

  • Krco, M. & PP,. Quantum clock synchronization: multiparty protocol. Phys. Rev. HAS 66(2), 024305. https://doi.org/10.1103/PhysRevA.66.024305 (2002).

    ADS MathSciNet CAS Google Scholar Article

  • Ben-Av, R. & Exman, I. Optimized Multi-Party Quantum Clock Synchronization. Phys. Rev. HAS 84(1), 344–23448. https://doi.org/10.1103/PhysRevA.84.014301 (2011).

    CAS Google Scholar Article

  • Zhang, J., Long, GL, Deng, Z., Liu, W. & Lu, Z. Nuclear magnetic resonance implementation of a quantum clock synchronization algorithm. Phys. Rev. HAS 70(6), 5412–5418. https://doi.org/10.1103/PhysRevA.70.062322 (2004).

    CAS Google Scholar Article

  • Kong, X. et al. Implemented multi-party quantum clock synchronization. Quantum. Inf. Treat 17207. https://doi.org/10.1007/s11128-018-2057-9 (2018).

    Google Scholar article

  • Yue, A., Jie-Dong, A., Zhang, A., Yu-Ran Fan, A. & Heng, A. Operation-triggered quantum clock synchronization. Phys. Rev. HAS 92032321. https://doi.org/10.1103/PhysRevA.92.032321 (2015).

    ADS CAS Article Google Scholar

  • Huelga, SF et al. On the improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868. https://doi.org/10.1103/PhysRevLett.79.3865 (1997).

    ADS CAS Article Google Scholar

  • Lukens, JM & Lougovski, P. Frequency-encoded photonic qubits for scalable quantum information processing. Optical 4(1), 8–16. https://doi.org/10.1364/OPTICA.4.000008 (2017).

    Article on Google Scholar Ads

  • Fabre, N. et al. Generation of a time-frequency grid state with integrated two-photon frequency combs. Phys. Rev. HAS 102012607. https://doi.org/10.1103/PhysRevA.102.012607 (2020).

    ADS CAS Article Google Scholar

  • Braginsky, VB & Vorontsov, YI Limitations of quantum mechanics in macroscopic experiments and modern experimental technique. Sov. Phys. Usp. 17, 644–650. https://doi.org/10.1070/PU1975v017n05ABEH004362 (1975).

    Article on Google Scholar Ads

  • Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit. Science 3061330 (2004).

    ADS CAS Article Google Scholar

  • Caves, CM et al. On the measurement of a weak classical force coupled to a quantum mechanical oscillator. I. Matters of principle. Rev. mod. Phys. 52(2), 341392. https://doi.org/10.1103/RevModPhys.52.341 (1980).

    Google Scholar article

  • Choi, BJ, Liang, H., Shen, X. & Zhuang, A. DCS: Distributed Asynchronous Clock Synchronization in Delay Tolerant Networks. IEEE Trans. Parallel Distrib. System 23, 491–504. https://doi.org/10.1109/TPDS.2011.179 (2012).

    Google Scholar article

  • Yuan, W., Wu, N., Etzlinger, B., Wang, H., and Kuang, J. Cooperative joint localization and clock synchronization based on Gaussian message passing in asynchronous wireless networks. IEEE Trans. veh. Technology 65(9), 7258–7273. https://doi.org/10.1109/TVT.2016.2518185 (2016).

    Google Scholar article

  • Zhang, Z., Gong, S., Dimitrovski, AD & Li, H. Time synchronization attack in a smart grid: impact and analysis. IEEE Trans. Smart Grid 4(1), 87–98. https://doi.org/10.1109/TSG.2012.2227342 (2013).

    Google Scholar article

  • Share.

    About Author

    Comments are closed.